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The steady, two-dimensional flows and interface shapes of the rimming flow of 
Newtonian and viscoelastic liquid films are studied by finite-element analysis. The 
viscoelastic flow calculations are based on the elastic-viscous split stress (EVSS) 
formulation for differential constitutive models. The EVSS formulation is derived by 
taking into account the mathematical type of the momentum, continuity and 
constitutive equations and is extended in this paper to calculation of free-surface 
flows. Calculations for a viscous Newtonian fluid demonstrate the balance between 
viscous forces and gravity which sets the shape of the interface of the liquid film 
coating the inside of the rotating cylinder. The liquid shape evolves from a concentric 
and circular film at high rotation rates to become thicker on the rising surface as the 
rotation rate is lowered. No steady flows with continuous films are found to exist 
below a minimum rotation rate, Q = Q,, where the family of flows evolves back 
toward higher values of Q. Multiple solutions are predicted for a range of rotation 
rates, Q > Q,, and unstable flows develop a pronounced bulge on the rising side of 
the film. Asymptotic analysis for a thin film predicts this limiting rotation rate. 
Adding viscoelasticity to the liquid, as modelled by the Giesekus constitutive 
equation, leads to the existence of steady solutions at lower rotation rates and causes 
the bulge to appear on stable films. The minimum rotation rate for steady, 
viscoelastic flow shifts to lower values as the time constant of the fluid is increased. 

1. Introduction 
Polymer processing operations typically involve flows with gas/liquid and 

liquid/liquid free surfaces. The unit operations of coating, film blowing, fibre 
spinning, and injection molding are examples of such processes (Pearson 1985). 
Accordingly there has been a great deal of interest in numerical simulation of such 
flows for viscoelastic liquid and melts; see Crochet, Davies & Walters (1984) and 
Keunings (1989) for references. However, the development of numerical methods for 
viscoelastic, free-surface flows has been severely limited by the inherent difficulties 
associated with the numerical solution of any viscoelastic flow. Numerically stable 
and convergent algorithms have only recently been developed for finite-element 
computation of viscoelastic flows whose exact solutions are not smooth and contain 
boundary layers and/or singularities (Marchal & Crochet 1987; King et al. 1988; 
Rajagopalan, Armstrong & Brown 1990b). In this paper, the elastic-viscous split 



612 D. Rajagopalan, R. Phillips, R. Armstrong, R. Brown and A .  Bose 

stress (EVSS) formulation, developed by Rajagopalan et al. (1990b) for differential 
constitutive models, is extended to the calculation of viscoelastic, free-surface flows. 

The calculations presented here are for steady, t,wo-dimensional flow in a liquid 
film on the inside of a long, horizontal, rotating cylinder. The film is dragged around 
with the cylinder by shear forces, and its motion is resisted by gravity on the rising 
side of the cylinder. At high rotation rates, the film is in rigid motion and the 
gas/liquid interface is perfectly cylindrical, centred inside the containing cylinder. 
The flow deviates from rigid motion as the rotation rate of the cylinder is lowered. 
At low rotation rates no continuous film is expected, because the liquid will fall from 
the top of the cylinder and shear forces will be insufficient to drag the fluid from the 
bottom. 

This so-called ‘rimming’ flow has been studied by several researchers by both 
asymptotic and numerical analysis for a Newtonian fluid, and their results are the 
starting point for the analysis of the viscoelastic flow. For several reasons, rimming 
flow is an ideal problem for understanding the effect of elasticity on a viscous, free- 
surface flow. First, for continuous liquid films, there are no contact lines between the 
gas/liquid interface and the solid. The importance of these contact lines is just 
beginning to be understood, even for Newtonian flows. Also, there is mounting 
evidence that the mathematical singularities introduced in the stress and pressure 
fields near these contact lines can have a drastic effect on the solvability of 
viscoelastic flows, depending on the asymptotic behaviour of the constitutive 
equation in this region (Apelian, Armstrong & Brown 1988; Coates, Armstrong & 
Brown 1992). Furthermore, the periodic nature of the problem in the azimuthal 
direction eliminates the need for inflow/outflow boundary conditions. The absence of 
these difficulties in the analysis of rimming flow was one of the reasons why this 
problem was selected by Orr & Scriven (1978) for one of the f i s t  numerical 
calculations of a Newtonian, free-surface flow. 

The rimming flow problem is particularly convenient for theoretical analysis, 
because both Newtonian and viscoelastic flows approach rigid rotation in the limit 
of very high rotation rates. This limit was the starting point of the asymptotic 
analysis of Ruschak & Scriven (1976), who presented a regular perturbation solution 
in terms of the inverse Froude number, g = G/Q2R,, where G is the gravitational 
acceleration, 52 is the rotation rate of the cylinder, and R, is its radius. They derived 
several parametric limits of their perturbation solution. One such limit was for small 
fluid inertia (low Reynolds number) and thin liquid films which was the lubrication 
limit considered earlier by Rao & Thorne (1972) in an analysis of rotational molding. 
The case of high Reynolds number, where viscous forces are confined to a thin 
boundary layer adjacent to the solid cylinder, was also considered by Ruschak & 
Scriven. 

Johnson (1988) used lubrication analysis in a study of rimming flow for both 
continuous and discontinuous thin films of Newtonian and generalized-Newtonian 
(power-law) fluids. He showed that two types of continuous film profiles are possible. 
The first corresponds to film depths that change smoothly around the cylinder and 
are thicker on the ascending portion and thinner on the descending side. The second 
type of film profile has rapid changes in the film depth on the rising side of the 
cylinder, where flow recirculation is possible. Johnson does not comment on the 
stability or connectivity of these two types of solution profiles. We demonstrate by 
a set of calculations that smoothly varying films and films with extreme bulges on the 
rising side of the cylinder are connected through folds in the solution surface as the 
rotation rate is varied. 
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Orr & Scriven (1978) presented numerical simulations of Newtonian rimming flow 
in their development of finite-element methods for viscous, free-surface flows. Their 
calculations were compared directly to the perturbation results of Ruschak & Scriven 
(1976) as a test of accuracy. We present similar calculations in $4.1 as a test of our 
numerical analysis. 

The only previous study of viscoelastic rimming flow is the regular perturbation 
analysis of Sanders, Joseph & Beavers (1981) which is based on an expansion in a 
small parameter analogous to the inverse Froude number g .  This theory is developed 
for a general fluid with memory (Green & Rivlin, 1957) and relates the complex 
viscosity of the fluid to the film profile for g 4 1. The asymptotic analysis was 
coupled with experimental measurements of the liquid film profile at  various rotation 
rates to determine the fluid’s complex viscosity, thereby characterizing its linear 
viscoelastic behaviour. Sanders et al. also observed instabilities in the film that 
developed as the rotation rate was decreased : the two-dimensional film first became 
unstable to a fully three-dimensional cellular pattern. Similar patterns were seen for 
viscous Newtonian liquids, and the authors concluded that the instability was not 
greatly influenced by the non-Newtonian character of the fluid. However, based on 
the experimental observations of Deiber & Cerro (1976), and Karweit & Corrsin 
(1975) with low-viscosity liquids, Sanders et al. suggest that there is a qualitative 
difference in the stability of rimming flow of high- and low-viscosity fluids. 

The numerical simulation of viscoelastic, free-surface flows has received limited 
attention because of the difficulties associated with developing convergent 
calculations for much simplier viscoelastic flows. The initial attempts at the 
numerical simulation of viscoelastic flow all suffered the so-called ‘high Deborah 
number problem’ (Brown et al. 1986; Keunings 1989). The calculations failed to 
converge for flows with appreciable elasticity and were not convergent with 
refinement of the numerical discretization ; the calculations reached ever-decreasing 
values of elasticity as the mesh was refined. Moreover, the solutions developed mesh- 
sized oscillations that were indicative of a Hadamard instability in an improperly 
formulated numerical discretization. Of the attempts at solution of viscoelastic, free- 
surface flows, only the calculations of Keunings and co-workers (Keunings 1986 ; 
Keunings & Bousfield 1987 ; Bousfield et al. 1986 ; Musarra & Keunings 1989) appear 
to be free of numerical instability. However, as pointed out by Keunings (1989, p. 
421), this may be attributable to the fact that the flows computed in these studies 
had smooth exact solutions, without any boundary layers or singularities. 

The breakthrough in the formulation of appropriate numerical methods for 
viscoelastic flows was prompted by a mixture of theory and numerical experiments. 
The theoretical work of Joseph, Renardy & Saut (1985) showed that the equation set 
formed from the momentum/continuity pair and a typical differential constitutive 
equation is of mixed hyperbolic and elliptic character for steady flows. For a general 
class of constitutive equations, the momentum/continuity pair is an elliptic saddle 
point problem for the velocity and pressure fields, and the components of the 
constitutive equation are a set of first-order hyperbolic equations for the stress. 
Conventional Galerkin finite-element methods applied to hyperbolic equations were 
known to be inaccurate and sometimes unstable, especially for singular problems 
(Brooks & Hughes 1982). The need to modify the discretization of the constitutive 
equation and utilize upwinding techniques to stabilize the numerical algorithm was 
recognized by Marchal & Crochet (1987) and by King et al. (1988). 

Marchal & Crochet ( 1987) developed a finite-element formulation that uses 
streamline upwinding (Brooks & Hughes 1982) to stabilize the discretization of the 
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constitutive equation. Streamline upwinding is analogous to the artificial diffusion 
used to stabilize finite-difference discretizations of hyperbolic problems. Marchal & 
Crochet were able to reach high Deborah numbers in viscoelastic flow calculations, 
without numerical instabilities. Dheur & Crochet (1989) extended the analysis to 
stratified flows with liquidlliquid free surfaces. The formulation of Marchal & 
Crochet yielded calculations to high Deborah number ; however the application of 
streamline upwinding yields stresses that are a t  most first-order accurate. This first- 
order rate of convergence is apparent in the recent comparison (Crochet, Delvaux & 
Marchal 1990) between results obtained with this method and with the highly 
accurate spectral calculations presented by Pilitsis & Beris (1989) for viscoelastic 
flow through a corrugated tube. 

The explicitly elliptic momentum equation (EEME) formulation was proposed by 
King et al. (1988) for calculation of viscoelastic flows using the upper-convected 
Maxwell (UCM) model. This formulation is successful for two main reasons. First, 
when the governing equations for viscoelastic flow are in EEME form, the 
momentum equation contains an explicit, generalized Stokes operator, which is 
guaranteed to be elliptic for all inertialess flows. The explicitly elliptic saddle point 
problem for velocity and pressure are solved by finite-element methods appropriate 
for generalized Stokes problems (Carey & Oden 1986). Second, the constitutive 
equation is discretized using the high-order-accurate streamline-upwind/Petrov- 
Galerkin (SUPG) method, developed by Brooks & Hughes (1982). The near 
optimal convergence rate of the SUPG method for linear, hyperbolic problems was 
established by Johnson, Navert & Pitkaranta (1984). King et al. (1988) and Burdette 
et al. (1989) have demonstrated the convergence and accuracy of the EEME 
formulation for model viscoelastic flows. The EEME method was extended to time- 
dependent flows by Northey, Armstrong & Brown (1990). 

Although the EEME formulation was successful in the calculation of several 
viscoelastic flows using the UCM model, it is not easily extended to other constitutive 
models. Most of these models are either too complex to enable the derivation of the 
EEME, or the ellipticity of the characteristics associated with the momentum 
equation cannot be guaranteed. However, the methodology used to construct the 
EEME formulation is robust. The idea is to construct numerical algorithms based on 
reformulated governing equations that contain dominant and explicit differential 
operators in each equation and to use discretization methods that respect the 
mathematical type of these equations. This methodology has lead to another 
numerical formulation that is applicable to a wide variety of constitutive models. 
This new formulation hinges on decomposing the stress tensor into Newtonian and 
elastic contributions. When this decomposition is substituted into the governing 
equations, a dominant, explicitly elliptic operator appears in the momentum 
equation. We call this method the elastic-viscous split stress (EVSS) formulation ; 
the finite-element algorithms based on this method and sample test calculations, for 
flows without geometric singularities, are described in Rajagopalan et al. (1990b). 
These results demonstrate the high-order accuracy of the EVSS method and 
excellent agreement with the spectral calculations of Pilitsis & Beris (1989) up to 
high Deborah number. 

In  this paper, we present an extension of the EVSS/finite-element method to 
viscoelastic, free-surface flows. This extension is based on well-developed finite- 
element methodology for Newtonian, free-surface flows. In  this framework, the shear 
and normal stress boundary conditions along the free surface are naturally 
incorporated into the weak form of the momentum equation. The free-interface 
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shape is discretized by one-dimensional approximating functions, and the kinematic 
condition at the interface is used to determine the location of the surface. The weak 
formulation yields a large set of nonlinear, algebraic equations in terms of the finite- 
element expansion coefficients of the field variables arid the interface shape. This 
equation set is solved by Newton’s method where the Jacobian matrix represents the 
sensitivity of the equations to changes in field variables and the surface shape 
(Kistler & Scriven 1983). Variations in the shape or position of the free-surface 
change the finite-element mesh, which in turn influences the approximation of the 
field variables. This effect is explicitly accounted for in the Jacobian matrix. 

The calculations presented here are based on a simple Mong6 representation 
(Weatherburn 1927) of the gas/liquid interface. The distances of the interface from 
the the centre of the cylinder at  a set of azimuthal locations are used to represent the 
free surface. The calculations are limited to surface shapes that are single-valued in 
this representation, i.e. the surface can nowhere be tangent to a line drawn radially 
outward from the centre of the cylinder. Although this constraint is not restrictive 
for calculation of Newtonian flows, viscoelastic flows exhibit a tendency to form 
exaggerated bulges which violate this criterion. 

The viscoelastic flow simulations presented here are carried out using a single- 
mode Giesekus differential constitutive equation to model the polymeric part of the 
deviatoric stress along with an additional Newtonian contribution to the stress 
tensor that accounts for the presence of a solvent. This constitutive equation is 
representative of a large class of models based on the UCM equation, so the 
calculations demonstrate the applicability of the numerical method to these models. 
The model parameters used are appropriate for a polymer solution described in detail 
by Quinzani et al. (1990). This solution of high-molecular-weight polysiobutylene in 
a polybutene/tetradecane solvent is called a ‘Boger ’ fluid. 

The formulation of the Newtonian and viscoelastic rimming flow problem is 
described in $2. The EVSS/fhite-element method for the free-surface flow is 
presented in $3. Results for both Newtonian and viscoelastic flows are described in 
$4 and are compared in $5 with a simple lubrication analysis for Newtonian flow. 

2. Flow geometry and governing equations 
The analysis is for a long, horizontal, cylinder of inner radius R,, rotating at an 

angular velocity Q. The cylinder is rotated fast enough that, when partially filled 
with a liquid of density p,  the liquid forms a continuous film that completely wets the 
cylinder. The gaseous core is assumed to be inviscid and to exert only an isotropic 
pressure on the liquid film. The calculations are for steady, two-dimensional, 
continuous liquid films with specified liquid volumes per unit length of the cylinder. 
Physically, this system would correspond to sealing the ends of the cylinder from the 
ambient, so that pressure in the gas core is unknown. A cross-section of the flow 
geometry is represented in figure 1. 

The flow field and interface shape are represented in a cylindrical polar coordinate 
system ( r ,  8) centred on the axis of the cylinder. Natural length and velocity scales 
for the flow are the cylinder radius R, and the linear velocity of the cylinder QR,, 
respectively. The location of the interface between the liquid and gas is given by the 
dimensionless shape function r = h(8). In the absence of gravitational acceleration, 
the interface is concentric with the cylinder, and h(8) is a constant determined solely 
by the volume of liquid loaded into the cylinder. The unit outward normal to the 
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FIQURE 1. The rimming flow geometry. 

interface n and the unit tangent vector t are shown in figure 1 and are expressed in 
terms of h(0) as 

n =  - he, + (dhld0) e, 
[(dh/d0)2+h2]f ' 

he, + (dh/d8) e, 
[(dh/dO)z +h2]f ' 

t =  

where e, is the unit vector in the ith coordinate direction. 
The conservation equations for the liquid phase are given in dimensionless form as 

v-v = 0, 

u~qvu+v.7c--sj = 0, 
(3) 

(4) 
where u is the velocity vector, x is the total stress tensor, made dimensionless by 
using the inertial scale pWR& j is the unit vector pointing vertically downward in the 
direction of gravity ; and g = G/Q2R,  is the dimensionless gravitational acceleration 
or inverse Froude number. 

The stress tensor is decomposed into the isotropic pressure p(7 ,  0 )  and the 
deviatoric stress tensor T as 

x =p1+7 ( 5 )  
The description of the fluid phase is completed by a constitutive equation for T. 

For the Newtonian fluid of viscosity p ,  T is given by 

1 .  T = --y, 
Re 

where y e ( V U ) + ( V U ) ~  is the rate-of-strain tensor, and the Reynolds number is 
Re = pSZRE/,u. 

Viscoelastic flow calculations are based on the single-mode, nonlinear constitutive 
equation developed by Giesekus (1982) and described in an augmented form by Bird, 
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Armstrong &, Hassager (1987). The Giesekus model is best written by dividing the 
deviatoric stress into a Newtonian solvent contribution T, and a viscoelastic 
contribution T~ as 

7 = T,+TP. (7) 

The two components of T are given in dimensionless form by 

and (9) 

where T , ( ~ )  is the upper-convected derivative of T ~ .  For steady flow, T~(,) is 

Tp(l) = u .  VTP - (Vu)T. Tp - Tp . (VU). (10) 

The three parameters appearing in the Giesekus model (8)-(9) are: the 
dimensionless viscoelastic relaxation time or the Deborah number De = AS2, where A 
is the dimensional relaxation time ; the mobility parameter a, which is a measure of 
the importance of anisotropic hydrodynamic drag on the macromolecules ; and p, the 
ratio of the solvent viscosity (7,) to the total zero-shear-rate viscosity of the polymer 
solution (q0) .  The solution viscosity (yo) is defined as the sum of the solvent viscosity 
and the zero-shear-rate viscosity of the polymer (qP). Hence, /3 is 

The Reynolds number in (9) is defined in terms of the solution viscosity as 
Re = pQR:/y0. 

The Giesekus model is one of the simplest differential constitutive equations that 
qualitatively describes the rheological behaviour of polymer solutions (Bird et al. 
1987). It predicts shear-thinning viscosity and first-normal stress coefficient as a 
function of shear rate, and bounded extensional viscosities as a function of extension 
rate. Moreover, multimode extensions of the Giesekus model that include a spectrum 
of relaxation times have been used to fit quantitatively the rheological data for 
several polyisobutylene solutions (Quinzani et al. 1990). In the limit of vanishing 
mobility, a = 0, the Giesekus model reduces to the Oldroyd-B model, and when 
a = 7, = 0, the UCM model is obtained. Both of these models fail to predict shear- 
thinning rheological properties in steady-shear flow and both predict unbounded 
extensional viscosities at  finite extension rates. 

The problem statement is completed by setting boundary conditions at the 
cylinder surface and the gaslliquid interface. At the cylinder surface, the no-slip and 
no-penetration conditions yield 

v = e g  r = l ,  0<8<27t .  (12) 

At the gaslliquid interface ( r  = h(8) ,  0 < 8 < 27t) the kinematic constraint requires 
that no liquid cross the interface, i.e. 

u-n  = 0. (13) 

f n : z  = 0 (14) 

The stress balance at the interface is decomposed into shear 
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nn:le-pp,+2HWe = 0 

where 3? is the local mean curvature of the interface and the Weber number 
We = u/p02R: scales the importance of the surface tension (u) relative to the fluid 
inertia. 

The pressure in the gas core (p , )  in (15) is computed so that the constraint of fixed 
liquid volume per unit length ( V )  

~ ~ ~ h z d c 9  = n-V (16) 

is satisfied. 
In  addition to  the boundary conditions (12)-(15), all field variables and the 

interface shape must be 2x-periodic in the azimuthal coordinate. Also, an arbitrary 
datum pressure is set in the liquid as p (  1, 0) = 0 to specify completely the pressure 
in the momentum equation. An alternative formulation used by Sackinger, Brown & 
Derby (1989) is to set the gas pressure arbitrarily and use the volume constraint (16) 
to compute a datum pressure difference across the interface. 

3. Numerical method 
The finite-element analysis of the viscoelastic rimming flow problem, (2)-( 16), is 

based on the extension of the EVSS method of Rajagopalan et al. (1990b) to account 
for the free surface. The solution of the purely Newtonian problem is recovered in the 
limit De = 0, and so its formulation is not presented separately. 

The EVSS method for viscoelastic flows is based on splitting the stress into elastic 
and viscous contributions. Substituting this splitting into the governing equations 
yields a dominant, explicitly elliptic operator on velocity in the momentum equation. 
The EVSS reformulation is implemented by defining the elastic stress tensor C ( r ,  0) 
as 

Using (17) to eliminate 7, from the deviatoric stress (7) and substituting into the 
expression for the total stress ( 5 )  leads to the stress tensor (le) defined as 

se = p l+C-y /Re .  (18) 

The EVSS form of the governing equations is obtained by substituting (18) into 
the momentum equation (4) and by using ( 1 7 )  to eliminate rp from the constitutive 
equation for the polymeric part of the stress, (9). For steady flows, these equations 
are 

v - v  = 0, (19) 

v - V v + V - ( p l + X - y / R e ) - g j  = 0, (20) 

where the dependent variables are now (u, C ,  p ) .  It is important to note that the 
components of y(l) in (21) contain second-order derivatives of the velocity field. 
These terms will require special consideration in the numerical formulation. 
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Equations (19)-(21) and the reformulated boundary conditions are discretized and 
solved by using the finite-element method. The dependent variables are expanded in 
classical Lagrangian basis functions which have compact support over the domain 
and are only %,, continuous across interelement boundaries (Strang & Fix 1973). The 
choices of the polynomials and the methods for discretization and incorporation of 
the boundary conditions hinge on the mathematical type of (19)-(21). The continuity 
and momentum equations, (19) and (20), form an elliptic saddle point problem for 
the velocity and pressure that is a straightforward generalization of the saddle point 
problem for Stokes flow (Carey & Oden 1986). We discretize these equations by a 
mixed, finite-element method for velocity and pressure that is proven convergent for 
Newtonian flows. Here the velocity components are represented by expansions in 
biquadratic basis functions &’(r, 0) and the pressure by an expansion in bilinear 
functions g$’(r, 0). Galerkin’s method is used to discretize these equations, as 
described below. 

Consistent with these approximations, the liquid region is subdivided into 
isoparametric elements. The meshes have rows of elements aligned with the 
gas/liquid interface and are defined by the number of elements in the radial (N,.) and 
azimuthal (No) directions. Unless otherwise stated, the elements are uniformly 
distributed in both directions. The interface shape is approximated by one- 
dimensional Lagrangian quadratic functions @f(0) .  

The constitutive equation (21) is hyperbolic in the elastic stress (C). We discretize 
this equation by the SUPG method, which is proven convergent for linear hyperbolic 
equations (Johnson et al. 1984). Biquadratic polynomials $S(r, 8) are used to 
approximate the stress components. Because the finite-element representation of the 
velocity field is only Vo-continuous at interelement boundaries, the second 
derivatives of velocity that appear in the term y(l) are ill-defined on these boundaries. 
As described in Rajagopalan et al. (1990b), we eliminate these singularities by 
interpolating the independent components of the rate-of-strain tensor ( y )  onto a 
continuous bilinear representation by the least-squares method. The weak form of 
the interpolation condition is 

n 

{y-(Vu)-(Vu)T}~::dA = 0, J, 
where @ ( r ,  8) denotes the basis functions for the rate of strain and the integral is 
over the liquid (9). The term y(l) is written in terms of first derivatives of the rate- 
of-strain tensor, which are well-defined across interelement boundaries. 

The weak forms of the momentum equation and the boundary conditions (13)-( 15) 
along the interface deserve special mention, because these conditions determine both 
the velocity field and the free surface shape. Following the finite-element algorithm 
developed by Kistler & Scriven (1983), we distinguish the kinematic condition (13) 
as the explicit equation for the interface shape and incorporate the normal (equation 
(15)) and shear (equation (14)) stress balances into the weak form of the momentum 
equation. 

A residual equation for the kinematic condition is formed by Galerkin’s method by 
using the basis functions for the free surface as 

where the integral is over the free surface 6 9 ,  
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The weak form of the momentum equation is developed by using the typical 
procedure for Newtonian flows (Carey & Oden 1986). The divergence theorem is 
applied to the Galerkin weighted residual equations to yield 

{&'(u.Vu-gj).e,-&' x:Ve,-V&'.(x-e , )}  dA+ (&'n.x-e,) ds = 0, 

(24) 

where 853 is the entire boundary including the solid surface of the cylinder and the 
artificial boundaries a t  8 = 0 and 8 = 2n. 

The boundary conditions are applied directly to the weak form (24). The boundary 
integral in this equation is split into contributions from each segment of the 
boundary. The contribution from the solid surface is unimportant because the 
components of the momentum equation along that boundary are replaced by the 
essential boundary conditions on velocity given by (12). The contributions along the 
periodic segments cancel each other because all variables have the same values and 
the outward normal points in opposite directions, depending on whether the segment 
is viewed from 8 = 0 or 8 = 27c. The only remaining contribution is evaluated along 
the free surface where the components of the stress balance are applied. The 
integrand in the boundary integral in (24) is rewritten in terms of the shear, (14), and 
normal stress, (15), conditions as 

n - n  = (nn:x )  n+ (tn:x)t = (pg-2%We) n. (25) 

The bcal mean curvature 2% is expressed in terms of the surface derivative of the 
local tangent vector (Weatherburn 1927) as 

d t  
2 2 n  = -, 

ds 

where s is the arclength along the surface. Substituting (26) into (25) yields 

d t  
n - x = p , n - W e - .  

ds 

Inserting (27) into the boundary integral and integrating by parts the term dt/ds 
leads to 

&'(n-n.e,) ds = 6, 
Substituting (18) and (28) into (20) gives the weak form of the momentum 

equation in terms of the dependent variables (u ,  p, C, y, h, pg). The gas pressure 
appears in the boundary integral (28) and is computed by incorporating the volume 
constraint, (16), as an additional constraint. 

The integrals in the weak equations are evaluated by using four-point tensor 
product Gaussian quadrature (Strang & Fix 1973). The resulting set of nonlinear, 
algebraic equations are solved by Newton's method. The terms in the Jacobian 
matrix are evaluated by using a one-sided, finite-difference approximation, which 
does not significantly impact the quadratic convergence rate of the iteration. Details 
on the computation of the Jacobian matrix can be found in Burdette et al. (1989). A t  
each finite-element node, the derivatives of the weak equations with respect to the 
free-surface position are evaluated by perturbing the free-surface height by a small 
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amount, evaluating the resulting pertuybktion in radial coordinates based on the 
nodal distance from the surface, and c$cu,lating a set of perturbed residuals. The 
Jacobian entries are then evaluated by subtracting the unperturbed residuals and 
dividing by the magnitude of the perthrbation in the free-surface position. The linear 
equation set a t  each Newton iteration is solved ,by using frontal elimination methods 
(Hood 1976) to minimize the amount of core memory required. After each Newton 
iteration, the new nodal values of the free-surface expansion are used to update the 
entire mesh. 

We use Newton's method to solve the nonlinear equations mainly because of its 
quadratic convergence rate as well as the ability to track solution families in 
parameter space. When a solution family does not exhibit folds in parameter space, 
analytic continuation methods are sufficient to calculate the solution trajectory and 
generate good initial guesses for the Newton iteration. The first derivatives of the 
residual equations with respect to the parameter are calculated and used to estimate 
the solution trajectory. This approximate trajectory is then used to generate a good 
initial guess to the solution at  a new value of the parameter (Yamaguchi, Chang & 
Brown 1984). At a limit point, the parametric representation of the solution breaks 
down, and the slope of at  least one of the variables becomes infinite. As described by 
Yamaguchi et al., the most general procedure to overcome this failure is to introduce 
the arclength along the solution family as a new parameter, and add an equation to 
compute the arclength. The augmented system of equations is solved for the new 
discrete variables as well as the new parameter value at a prescribed arclength away 
from a known solution. An initial guess for both the solution and the parameter is 
generated by using continuation in the arclength. 

Newtonian flow calculations are pkrformed by removing the constitutive equation 
and the interpolation conditions for the rate-of-strain tensor from the equation set 
in order to minimize the size of the discrete system. 

4. Results 
* .  

The Newtonian and viscoelastic rimming flo% problems are defined by four (Re, 
V ,  We, 9)  and seven (Re, 7, We, 9, De, ot, p) dimensional parameter spaces. Complete 
investigation of these problems is impractical. We divide our presentation into two 
parts. In the first, we establish the convergence and accuracy of the numerical 
method. Convergence with mesh refinement is demonstrated for both Newtonian 
and viscoelastic flows. For Newtonian flows, we also compare our calculations to 
the results of the perturbation expansion of Ruschak & Scriven (1976) and to 
the previous finite-element calculations of Orr & Scriven (1978). In this case, the 
parameters selected are the same as those used by Orr & Scriven. 

The second set of simulations focuses on parameter values that are appropriate for 
the polyisobutylene Boger fluid whose rheology is described in detail in Quinzani 
et al. (1990). We distinguish Newtonian and viscoelastic behaviour through 
calculations for a Newtonian fluid with the same viscosity. The numerical study of 
the Boger fluid involves a small parameter space because all the dimensionless groups 
except the liquid volume and the parameters in the constitutive equation (a, p) scale 
with the rotation rate. For fixed rheological parameters that best approximate the 
Boger-fluid rheology , we compute steady solutions as a function of decreasing 
rotation rate and for different liquid volumes V .  The radius of the cylinder is set at 
R, = 0.05 m. 
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FIGURE 2. Comparison of Newtonian numerical simulation results with the perturbation solution 
of Ruschak & Scriven (1976) ; calculations are for a mesh with (No, N,) = 80 x 20, We = 1, and 
V =  1.131. (a)  Low-Reynolds-number case: Re = 1 ,  ( b )  high-Reynolds-number case: Re = 1500. 
+, v e ;  x ,  v,; 0, p ;  0,  h. 

4.1. Accuracy and convergence 
4.1.1. Newtonian Jlow 

The accuracy of the finite-element analysis for Newtonian flows is verified by 
direct comparison between these calculations and the results of the regular 
perturbation expansion in g of Ruschak & Scriven (1976). Comparisons are presented 
in the two limits presented by these authors : high and low Reynolds numbers. The 
maximum absolute difference between the finite-element and asymptotic results, 
llelloo, is displayed in figure 2(a)  as a function of g for each field variable: Re = 1, 
We = 1 and V = 1.131. The mesh used in this comparison had (No, N,) = ( S O ,  20), 
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Mesh: 20 x 5 I Mesh: 40 x 10 Mesh: 80 x 20 

FIQURE 3. Contours of the pressure (13) and the radial.velocity (w,) for a Newtonian fluid : g = 2, 
We = 1 ,  Re = 1, and V = 1.131. Results are shown for meshes with (No, N,) = 20 x5,  40 x 10 and 
80 x 20. Maximum (0)  and minimum (0) values of the field are denoted. 

corresponding to 14961 degrees of freedom. The agreement is very good with the 
largest errors appearing in the pressure and the tangential velocity. As expected, the 
difference between the analytical and numerical results increases with increasing 9. 
However, there is reasonably good agreement even for g = O(l) ,  as Om & Scriven 
(1978) also noticed. 

Ruschak & Scriven presented inner and outer expansions of their perturbation 
solution for the case Re & 1. A viscous boundary layer forms adjacent to the cylinder 
for high Reynolds number ; resolution of this layer represents a considerable 
challenge for the numerical computations. We have constructed the uniformly valid 
solution from these expansions and have compared it to  the finite-element 
computations for Re = 1500, We = 1 and V = 1.131, for various values of g .  A mesh 
of (No, N,) = (80, 20) with the radial elements graded towards the cylinder was used 
to capture more accurately the viscous boundary layer. Plots of the maximum 
difference between the computed and analytical solutions are shown in figure 2 (b). 
There is good agreement in the range < g < lo-’. Orr & Scriven do not show an 
equivalent comparison, but remark that at  high Reynolds number, ‘the agreement 
deteriorates more rapidly with increasing gravity ’. 

The results in figure 2 establish the accuracy of our computations on a single mesh. 
It is also important to demonstrate the convergence of our numerical method on 
successively finer meshes. The effect of mesh refinement on the calculation of the low 
Reynolds number (Re = 1) Newtonian flow is shown in figure 3 ;  here g = 2, We = 1, 
and V =  1.131. Contours of pressure (p) and radial velocity (v,) are shown from 
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0 9 . 0 0 9 ~  10 

Mesh: 20 x 5 Mesh: 40x 10 Mesh: 80 x 20 
FIGURE 4. Contours of the pressure ( p )  and the radical velocity (w,) for a Newtonian fluid: 
g = 0.325, We = 1 ,  Re = 150, and V = 1.131. Results are shown for meshes with (No, N,) = 20 x 5, 
40 x 10 and 80 x 20. Maximum (0 )  and minimum (0) values of the field are denoted. 

calculations on three uniformly spaced meshes with (NB, N,) = (20, 5), (40, lo), and 
(80, 20). In  these contour plots, the interval between the maximum and minimum 
value of the field is divided into 10 equal parts and 11 contours are drawn, including 
the maximum and minimum values of the field. In  addition, whenever the field takes 
on a zero value inside the domain, the zero contour is drawn for reference and is 
shown by a thicker curve. As the mesh is refined, the contours become smoother, and 
the maximum and minimum values of the fields approach constant values, indicating 
that the numerical method is converging. 

A similar sequence of plots is shown in figure 4 for the high-Reynolds-number flow 
of a Newtonian fluid; Re = 150, g = 0.325, We = 1, and V = 1.131. The meshes used 
have the same number of elements that  were used in figure 3, but each is radially 
graded towards the cylinder wall to capture accurately the boundary layer. The 
contours become smoother as the mesh is refined and the maximum and minimum 
values converge. The plots of the radial velocity on the two coarsest meshes show 
jagged zero contours a t  various locations in the domain. This is indicative of the 
solution field varying very slightly about zero. The absence of most of these contours 
in the calculation with the finest mesh indicates that  most of these variations on the 
coarser meshes are a numerical artifact that is eliminated by mesh refinement. 

The contours of the components of the velocity field (w,, wB), pressure (21) and stream 
function ($) shown in figure 5 were computed on a mesh with (No, N,) = (20, 5) 
and are for exactly the same parameters for Newtonian rimming flow as used in 
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FIQURE 5. Contours of azimuthal (vo) and the radial (v,) velocities, pressure (p) and stream 
function (@) for a Newtonian fluid calculated on a mesh with (No, N,) = 20 x 5 :  g = 0.5, We = 1, 
Re = 150, and V =  1.131. 

figure 5 of Orr & Scriven (1978); Re = 150, g = 0.5, We = 1, and V = 1.131. There are 
noticeable differences between our results and those of Orr & Scriven. The shape of 
the free surface is obviously different as well as the size of the recirculation zone. 
Whereas the flow recirculation computed by Orr & Scriven is confined to the region 
near 8 = En, the recirculation shown in figure 5 extends up the side of the cylinder 
beyond 0 = 0, where no backflow is observed by Orr & Scriven. This discrepancy 
persists on a coarser mesh comparable to the one used by Orr & Scriven, while our 
results compare well to the high-Reynolds-number limit of the gravity perturbation 
analysis, on a sequence of meshes. 

4.1.2. Viscoelastic flow 
The convergence of the EVSS/hite-element method for viscoelastic flow is 

established by the computation of viscoelastic rimming flow on a succession of finer 
meshes. In the absence of a perturbation analysis with the Giesekus model, mesh 
refinement is the only available test of accuracy. Convergence with mesh refinement 
of the EVSS formulation for the rimming flow is shown in figure 6 for the parameter 
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FIQURE 6. Contours of total azimuthal normal stress (roo) and the radical velocity (w,) for a 
viscoelastic fluid: g = 0.325, We = 1, Re = 150, V = 1.131, De = 1, a = 0.01, and = 0.5. Results 
are shown for meshes with (No, N,) = 20 x 5, 40 x 10 and 80 x 20. Maximum (0)  and minimum (0) 
values of the field are denoted. 
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FIQURE 7. (a) Evolution of the steady-state solution family for flow of a high-viscosity Newtonian 
fluid in a 0.05 m radius cylinder. ( b )  Expanded view near the limit-point value of the rotation rate, 
point (ii) in (a). Meshes: +, 2 0 x 5 ;  0,  40x 10; V, 6 0 ~  10; 0 ,  8 0 ~  10. 
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values Re = 150, g = 0.325, We = 1, V = 1.131, De = 1, p = 0.5, a = 0.01. The finite 
element meshes are the same as used in the computations shown in figure 4. The plots 
show the convergence with mesh of v, and the azimuthal component of the total 
stress(nee). As for the Newtonian calculations, both the form and the quantitative 
values of the fields converge with mesh refinement. In addition, a comparison of 
figures 4 and 6 shows a qualitative difference between Newtonian and viscoelastic 
flow. Although the gas/liquid interface is essentially circular in both cases, the 
interface in the viscoelastic case is rotated counterclockwise through an angle 
measured by the location of the maxima and minima of v,. More examples of this 
phase shift are given in 34.2. 

4.2. Boger fluid calculations 
The Boger fluid calculations are for a polyisobutylene solution described by Quinzani 
et al. (1990). The rheological properties of this fluid are fit to a single-mode Giesekus 
model with a solvent to yield the parameters A = 0.792 s, a = 0.001 and p = 0.61. The 
zero-shear-rate viscosity of the fluid is 13.6 Pa s, and the density is 880 kg/m3. The 
surface tension of the polymeric solution is assumed to be equal to that of the 
polybutene solvent, which is quoted by the supplier as CT = 0.03 N/m. The four 
dimensionless groups (Re, We, g ,  De) are expressed in terms of these parameters and 
the rotation rate Q (rad/s) as 

Re = 1.618 x lo-' x SZ, 
We = (2.818 x 10-')/Qa, 

g = (1.96 x 102)/Q2, 

De = 7.92 x lo-' x Q. 

The rheological parameters a and p, and the liquid volume V are independent of 
rotation rate. Steady solutions are computed for decreasing rotation rate for both 
the Newtonian and viscoelastic fluids and various values of V .  The calculations 
are started with a high rotation rate (Q x 4 rad/s), a t  which the free surface is 
almost concentric with the cylinder and the rigid motion solution is a good first 
approximation for the field variables. The solution family that evolves with 
decreasing rotation rate is computed using arclength continuation, as described in 

The results are presented as plots of the arclength of the interface, normalized with 
the arclength of the circular surface that encloses the same volume, as a function of 
the rotation rate 0. The normalized arclength represents the deviation of the 
interface from the shape for rigid rotation. Sample flow fields for specific values of SZ 
are also included. 

§ 3. 

4.2.1. Newtonian flow 
The results in figures 7 and 8 are for a Newtonian fluid with the same properties 

as the Boger fluid, except A = 0. The liquid volume per unit length used in these 
calculations is V =  1.75. The most important feature of these calculations is the 
occurrence of the limit point in rotation rate at Q = 52, x 2.53 rad/s. No steady 
solutions were found for lower rotation rates and the family of flows turned back to 
higher values of Q. As shown in figure 7(a ) ,  and in the expanded view figures 7 ( b ) ,  
the limit point was computed with four finite-element meshes to guarantee that it is 
not an artifact of poor resolution of the flow field. The four meshes used each had 
uniform element sizes in the radial direction. The two meshes with No = 60 and 80 
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FIGURE 8. Contour plots of (a) azimuthal velocity (we), and ( b )  pressure ( p )  calculated on a 40 x 10 
mesh for a high-viscosity Newtonian fluid at three rotation rates (marked on figure 7 ) :  
(i) 4.17 rad/s, (ii) 2.53 rad/s and (iii) 2.55 rad/s. Maximum (0) and minimum (0) values of the 
field are denoted. 
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FIQURE 9. (a) Evolution of steady-state solution family for flow of a viscoelastic, Boger fluid 
( A  = 0.792 s )  in a 0.05 m radius cylinder. (a) Expanded view near the limit-point value of the 
rotation rate point (iii) in (a). Meshes: 0 ,  40 x 10; V, 60x 10; 0,  80 x 10. 

had elements concentrated azimuthally in the region of highest interface deformation 
near 8 x - 20". 

Elementary ideas linking folds in solution curves in parameter space to the linear 
stability of each steady solution (Iooss & Joseph 1981) show that the flows on the 
reverse portion of the curve in figure 7 past the limit point must be temporally 
unstable. Then, the limit point must correspond to the minimum attainable rotation 
rate below which steady, two-dimensional, continuous films do not exist. 

Sample interface shapes and fields for Vg and p are shown in figure 8 for three values 
of SZ : (i) on the stable portion of the solution family, (ii) near the limit point, and (iii) 
on the unstable portion of the solution family. The interface on the stable side is 
almost a concentric circle with a slight displacement towards 8 = n. A t  the limit 
point, the interface is much flatter on the side of the cylinder with the rising flow. The 
interface for the unstable solution shows the formation of a bulge a t  8 z -20". The 
appearance of the bulge was the reason for the extensive mesh refinement in this part 
of the film. 

It is interesting to follow the evolution of the maximum and minimum values of 
the azimuthal velocity as the solution evolves around the limit point. Between the 
high rotation rate (4 rad/s) and the limit point on the stable side of the family, the 
fluid decelerates on the rising side of the film, and the value of V e  on the surface of 
the film a t  8 x 0 decreases. The film thickens in this region to compensate for the 
slower motion. On the unstable part of the solution family, we has almost dropped to 
zero in the bulge, indicating that the fluid is about to recirculate. 

The bulging interface shapes are similar to some of the forms predicted by the 
lubrication analysis of Johnson (1988). However, he did not realize that these forms 
are unstable. The bulge is caused by the fluid stress normal to the interface exceeding 
the pressure in the gas phase. In  order to compensate for this effect and maintain the 
force balance, the curvature must locally change sign to allow the surface force to act 
in the same direction as the gas pressure. The solution field near Q x 2.55 rad/s 
shows this bulging interface. 
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FIGURE lO(u,b).  For caption see facing page. 
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FIQURE 10. Contour plots of (a) azimuthal velocity (ve), ( b )  total azimuthal normal stress (nm), 
(c) total radial normal stress (nrr) and (d )  total shear stress (nre) calculated on a 40 x 10 mesh for 
a viscoelastic, Boger fluid ( A  = 0.792 s) at three rotation rates: (i) 4.17 rad/s, (ii) 1.95 rad/s and 
(iii) 1.86 rad/s. Maximum (0 )  and minimum (0) values of the field are denoted. 
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Unfortunately, we were unable to continue the calculations to higher values of 52 
along the unstable solution branch. Here, the bulge became so pronounced that the 
interface shape could not be represented as r = h(0). Mathematically, this occurs 
when the interface becomes tangent to a spine emanating from the origin and 
r = h(0) becomes multivalued. This tangency condition cannot be reached with this 
interface representation. Instead, another limit point is found and the discrete 
solution turns to lower rotation rates. This second limit point is an artifact of the 
failure of the interface representation. Solutions just beyond this point were not 
convergent with mesh refinement. Furthermore, the interface shapes computed in 
this region show sharp oscillations that are on the size of the mesh, indicative of a 
failure in the numerical method. Flows for higher rotation rates can only be 
computed using interface approximations that do not hinge on the Mong6 
representation. 

The computations of Newtonian flows do not provide much motivation to adopt 
such a representation, because the bulging of the interface occurs on the unstable side 
of the family and would not be observable experimentally. However, the 
computations for the viscoelastic Boger fluid do provide this motivation. 

4.2.2. Viscoelastic JEow 
All the calculations for viscoelastic flows were performed using meshes that were 

graded radially towards the free surface to capture the steep gradients in the 
azimuthal normal stress which appear there. In addition, the meshes with No = 60 
and 80 were graded azimuthally to concentrate elements near the bulge which occurs 
near 6 x 36". The normalized arclength of the interface computed as a function of 52 
is shown in figure 9 for the Boger fluid with a volume per unit length V = 1.75. From 
an approximately concentric interface a t  SZ x 4 rad/s, the interface flattens slightly 
on the rising side of the film without much change until 52 x 1.95 rad/s. At this point, 
there is an increase in arclength as the same bulge observed for the Newtonian case 
develops. The bulge grows as Q is decreased, but close to SZ x 1.86 rad/s, it  becomes 
too severe for the Mong6 representation. No bifurcation or limit points are detected 
between 52 = 4 and 1.86 rad/s. Thus, steady, viscoelastic flows exist at rotation rates 
well below the point where the Newtonian flows cease to exist and turn back to 
higher rotation rates. Furthermore, the bulging interface shapes are found on the 
stable branch of the solution family. 

Sample fields for the variables (vg, nee, nrr, rrg) are shown in figure 10 for the 
rotation rates corresponding to the three points (i)-(iii) shown in figure 9(a) .  The 
trends in the maximum and minimum values of the azimuthal velocity are the same 
as those observed for the Newtonian flow. The stress fields give some indication of 
why steady, viscoelastic flows exist at lower rotation rates. As the analysis in 55 
reveals, the Newtonian limit point is a consequence of gravity overcoming the 
viscous drag of the cylinder. From the contours of vg near the Newtonian limit point 
(figure 8a), the shear stress a t  ( r ,  0) x ( 1 , O )  is n,, x -2. From the plot of shear stress 
for the viscoelastic case (figure 10d, ii), the shear stress in the same region of the flow 
is twice as large, which is indicative of greater drag on the fluid. Hence, the rotation 
rate a t  which gravity can overcome the drag force of the cylinder is shifted to lower 
values, and steady solutions exist at lower rotation rates, as compared to the 
Newtonian case. 

The limit point in SZ for the Boger fluid could not be computed because of the 
failure of the Mong6 interface representation. In order to establish whether this limit 
point exists for a viscoelastic fluid, we simulated the flow of a viscoelastic fluid 
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FIGURE 11. (a) Evolution of the steady-state solution family for flow of a viscoelastic, Boger fluid 
( A  = 0.132 s) in a 0.05 m radius cylinder. (a) Expanded view near the limit-point value of the 
rotation rate, point (ii) in (a). Meshes: 0 ,  40x 10; V, 6Ox 10; 0, 80 x 10. 

identical to the Boger fluid in all its properties, except that the fluid time constant 
was lowered to h = 0.132 s, or one-sixth of the value for the Boger fluid. The results 
of this simulation are shown in figures 11 and 12 for a liquid volume per unit length 
V = 1.75. The limit point is observed at a rotation rate of 0, x 2.46 rad/s and is 
convergent with mesh refinement. Thus, even with a less elastic fluid, steady 
solutions exist at  lower rotation rates than for the Newtonian fluid. For h = 
0.132s, just around the limit point, the arclength increases rapidly, the bulge 
develops, and the interface representation breaks down. 

There are some other interesting effects of viscoelasticity. For example, 
introducing viscoelasticity rotates the bulging section of the interface to higher 
values of 0 relative to the Newtonizn flow. The bulge appears at approximately 
0 = -20" for the Newtonian case and 0 = 36" for the Boger fluid. This phase shift is 
a manifestation of the delayed response of a viscoelastic fluid to an imposed strain 
rate, compared to the instantaneous response of Newtonian fluids. The larger the 
fluid time constant, the longer it takes the fluid to respond to any imposed strain rate 
and the greater the magnitude of the counterclockwise phase shift in rimming flow. 

The extensional behaviour of viscoelastic fluids is accentuated by the two 
viscoelastic simulations with different time constants. While the kinematics are 
essentially the same in both flows, the azimuthal normal stresses show dramatically 
different behaviour. For the higher time constant, steep gradients in m6e build up near 
the free surface, as seen by the collapsing of the contours on the free surface in figure 
10(b). The simulations with the lower time constant do not show steep gradients in 
nee anywhere in the domain. These differences are explained on the basis of the 
extensional properties of the fluid. A fluid element close to the interface experiences 
an appreciable extension rate ( x ( l / ~ )  &~,/a0)  as it moves between 0 < 0 < IC. This is 
evident from figure 13 which shows streamlines superimposed on contours of 
azimuthal velocity at D = 1.86 rad/s, for A = 0.792 s. The Giesekus model predicts a 
rapid increase in the extensional viscosity at  a critical value of extension rate that 
is inversely proportional to the time constant. The increase in extensional viscosity 
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FIGURE 12(a,b) .  For caption see facing page. 
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FIGURE 12. Contour plots of (a) azimutyhal velocity (we), (b) total azimuthal normal stress (nM), 
( c )  total radial normal stress (n,,) and (d )  total shear stress (nre) calculated on a 40 x 10 mesh for 
a viscoelastic, Boger fluid ( A  = 0.132 s) at three rotation rates: (i) 4.17 rad/s, (ii) 2.4603 rad/s and 
(iii) 2.4005 rad/s. Maximum (0 )  and minimum (0) values of the field are denoted. 

21 FLM 235 
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FIGURE 13. Streamlines (solid lines) superimposed on contours of azimuthal velocity (dashed lines) 
calculated on a 40 x 10 mesh for a viscoelastic, Boger fluid ( A  = 0.792 s )  at a rotation rate a = 
1.86 rad/s. Maximum (0 )  and minimum (0) values of the field are denoted. 

is proportional to l/a. For the higher time constant, the critical extension rate is 
below the extension rate in the flow, so that the viscosity increase leads to stress 
build-up a t  the interface. Conversely, the critical extension rate for the fluid with the 
lower time constant is not attained in the flow and no dramatic increase is observed 
in 7 ~ ~ ~ .  

5. Lubrication analysis 
The liquid films reported in the calculations shown in figure 8 suggest that a 

lubrication theory based on the assumption that the average film thickness E (scaled 
with R,) is small may describe the nonlinear behaviour described in $4.2. We have 
developed such an asymptotic theory for Newtonian flows ; our analysis is similar to  
the theory reported by Johnson (1988). The general approach we follow is similar to  
the one used by Babchin et al. (1983) to derive the Kuramoto-Sivashinsky equation 
describing the interfacial deformation associated with the Rayleigh-Taylor in- 
stability. We begin by defining a dimensionless coordinate y as 

r = 1-cy. (33) 

h l-~$. (34) 

I n  addition, the position of the interface in wall coordinates $ = $(8) is defined as 

Both y and $r are scaled by the average film thickness E and are O( 1) for e 4 1. 
The lubrication approximation is formed by scaling the governing equations 

(3)-(6), the boundary conditions (12)-(15), and the volume constraint (16) so that 
E < 1 and 8Re < 1. The continuity equation (3) and the r -  and 8-components of 
the momentum equation become 

(35) 

- = 0, 
as 
aY 
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where the reduced pressure 9(y, 8 )  is defined by 

VB -= E2Re (Vp---re , ) .  

The boundary conditions (12)-( 15) reduce to 

v o = l ,  y = o ,  (39) 

and p -pg = - 2 Z W e .  (42) 

Finally, the volume constraint (16) is written as 

I r l / d B =  2x 1.  (43) 

Equation (36) implies 9’ = 9’(0), and (37) is integrated twice to give 

where the constants of integration have been evaluated from (39) and (41). The 
continuity equation (35) is integrated to yield v r (y ,  d ) ,  and the two components of v 
are substituted into (40) to give 

Integration of (45) yields 
1 d B  
3 d0 

$---$3 = 1, 

where the constant of integration has been set equal to unity so that l/ is identically 
equal to the average film thickness in the limit of solid-body rotation, i.e. d9/d8 = 0. 
It remains to relate the pressure derivative in (46) to $. This is done using the 
normal stress condition (42) and the definition (38), which together yield 

(47) 

Writing dX/di9 in terms of $ and substituting into (46) gives the following 
nonlinear, ordinary differential equation for $ : 

$-&h3e2Re [2eWe($-”’-$’)+g cosrY] = 1, (48) 

where a prime denotes a derivative with respect to 8. Equation (48) governs the 
interface position. In  the limit We + 0, it is equivalent to the expression recently 
derived by Johnson (1988), in which surface tension was neglected. 

5.1. Perturbation analysis for small g 
A solution valid in the limit g 6 1 is obtained by deriving a regular perturbation 
expansion as 

$ = $-o+$r, g + $ 2  g 2 +  .... (49) 
21-2 
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E (i) (ii) (iii) FEM 

0.05 0.0793 0.0793 0.117 0.140 
0.10 0.317 0.317 0.467 0.483 
0.20 1.27 1.27 1.87 1.415 
0.33 3.53 3.53 5.20 2.53 

TABLE 1. Values of Q(rad/s) at the limit point. 

The equations that govern the coefficients ( $ o ,  $,,...) are obtained by substituting 
(49) into (48) and collecting terms of equal order in g .  The solutions to the two lowest 
order problems that satisfy (43) and the periodic boundary conditions are 

$0 = 1 (50) 

and 
&2 Re ie5 Re2 We 

cos 8 + sin 8. 
1 + (g3 Re We)’- ’’ = 1 + ($.” Re We)2 

For any case other than We 9 1, the conditions assumed in applying the 
lubrication approximation require that (51) be equivalent to 

(52) 
1 $ = -e2Re cos8, 

l - 3  

which is identical to the result given by Ruschak & Scriven (1976). 

5.2.  Spectral analysis 
The nonlinear behaviour of (48) is examined by representing the solution in the 
Fourier series 

N a  N b  

31. = I +  A ,  cosnO+ B,  sinno. (53) 
n-1 n-1 

Setting the first term of the right side of (53) equal to unity ensures that (43) is 
satisfied. Substituting (53) into (48) and applying Galerkin’s method yields a set of 
(Nu + N b )  nonlinear, algebraic equations for the remaining coefficients (An, Bn).  The 
solution of this set of algebraic equations is compared below with the numerical 
calculations presented in $ 4. 

Three levels of approximation have been studied: (i) Nu = 1 and Nb = 0, (ii) 
Nu = 1 and Nb = 1, and (iii) Nu = 2 and Nb = 2. For case (i), two solutions for A ,  are 
readily obtained as 

1 f [ 1 - (c2 
A ,  = g2 Re g 

In  the limit e2Reg 4 1, the asymptotic result (52) is obtained 
The two real solutions given by (54) become complex a t  a limit 

e2Reg = 1, 

(54) 

directly from (54). 
point given by 

(55) 
which confirms the predictions of a limit point reported in $4. 

The spectral approximations (ii) and (iii) yield two and four nonlinear algebraic 
equations, respectively, which are solved numerically and which also exhibit limit- 
point behaviour. The limit points in l.2 predicted by the approximations (i), (ii), and 
(iii) are compared in table 1 with the finite-element results method of $3 for the 
parameter values given in (29)-(31). As expected, the two sets of results are in better 
agreement as e becomes small and as Nu and Nb are increased. 



Influence of viscoelasticity on steady solutions in rimming flow 639 

As a further comparison between the lubrication theory and the computations, we 
have evaluated the Fourier coefficients from the finite-element solutions and have 
compared these directly to the results of the lubrication approximation (iii) (see table 
2). The comparison is made for two rotation rates a t  E = 0.1 and 0.2. The agreement 
for the coefficients A ,  and A ,  is quite good, even at  the lower rotation rate, which is 
close to the limit point in Q. For each case, the values of B, and B, are negligible 
compared to A ,  and A, ,  suggesting that the contribution of the sine terms in (53) is 
negligible at these parameter values. This result is consistent with the perturbation 
approximation (51), where the cosine terms dominate if We 4 g .  The agreement 
between the numerical and analytical values of the coefficients B, and B, is not as 

The simplicity of the result (55) leads to a straightforward physical explanation for 
the presence of a limit point with decreasing rotation rate. The dimensionless product 
gRe is a measure of the relative importance of gravitational and viscous forces. 
Equation (55) implies that the viscous forces must dominate the gravitational forces 
by an amount that scales as l/s2 for a stable fluid layer to exist. Beyond this limit, 
gravity will cause the fluid to gather a t  the bottom of the cylinder more rapidly than 
it is carried upward by viscous forces exerted by the cylinder wall. Violating this 
balance results in a partial, or incomplete coating. Interestingly, the effects of surface 
tension are not important at the parameter values given in (29)-(32), and need not 
be included in the calculation of limit points such as those described here. 

good. 

6. Discussion 
Our calculations for the rimming flow of Newtonian and viscoelastic fluids 

demonstrate the accuracy and stability of the elastic-viscous split stress (EVSS)/ 
finite-element method (FEM) for solving viscoelastic, free-surface flows, without 
contact-line singularities. The calculations converge with mesh refinement and 
capture the steep boundary layers in the stress field that develop with increasing 
fluid elasticity and deviation from rigid-body motion. 

Even the relatively simple geometry of the rimming flow poses significant 
difficulties for numerical simulation. First, continuous liquid films do not exist for all 
rotation rates. The appearance of limiting values of the rotation rate is demonstrated, 
below which the family of steady, two-dimensional flows reverses direction and 
continues to higher values of 52. This limit point in rotation rate marks the end of the 
existence of steady, two-dimensional flows. Unless the film is destabilized by steady, 
three-dimensional or time-periodic, two-dimensional flow transitions at  higher 
rotation rates, this limit point also corresponds to the stability boundary for these 
flows. The limited experimental data of Sanders et al. (1981) lead us to suspect that 
three-dimensional transitions may play a role in the stability of these films. For thin 
liquid films, the limiting value of Q is well predicted by the analysis of the nonlinear, 
film-flow equation derived from lubrication theory. This theory clearly demonstrates 
that the loss of solution is a result of the competition between gravity and viscous 
forces. The lubrication theory predicts the limit point for thicker films, but the 
agreement with the numerical simulations deteriorates substantially. Interestingly, 
the film shapes beyond the limit point show the development of a bulge in the 
ascending part of the flow. These unstable flms resemble the distorted forms 
predicted by Johnson (1988), but which were not previously linked to the occurrence 
of the minimum rotation rate. 

Adding elasticity to the fluid, by increasing the relaxation time from zero, leads to 
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E = 0.1 

D = 8.33 rad/s 52 = 0.542 rad/s 

(iii) FEM (iii) FEM 

A1 1.27 x 1.18 x 2.53 x lo-' 2.22 x lo-' 
B1 9.30 x 6.00 x 8.46 x 1 0 - 5  - 3.28 x 10-5 
A2 2.42 x 10-4 1.18 x 10-4 8.94 x lo-' 6.92 x lo-' 
B2 1.23 x 2.55 x 1.08 x 1 0 - 4  -2.22 x 10-5 

E = 0.2 

D = 8.33 rad/s D = 1.92 rad/s 

(iii) FEM (iii) FEM 

A1 5.13 x 4.20 x 3.48 x lo-' 2.09 x lo-' 

A2 3.94 x 10-3 1.78 x 1.59 x lo-' 4.47 x 10-2 

TABLE 2. Comparison of surface shapes computed from the spectral expansion and the 
finite-element method 

B1 3.21 x 10-s 7.73 x 4.45 x 10-3 9.15 x 10-4 

B2 1.64 x 1 0 - 6  7.95 x 5.88 x 10-4 4.35 x 10-4 

the existence of steady flows at lower rotation rates. For the parameters of the Boger 
fluid described in $4.2, adding a relaxation time of less than 1 s leads to the existence 
of steady flows at almost 1 rad/s below the critical rotation rate for Newtonian flows. 
The increased range of rotation rates €or the existence of viscoelastic flows results 
from the appreciably higher drag exerted on the fluid as a consequence of elasticity. 
In addition, elasticity stabilizes the bulging interface shapes. The bulges lead to 
almost stagnant flow near the interface in the thickest part of the film and should be 
observable in experiments. 

The maximum value of the fluid relaxation time that can be used in the 
EVSS/FEM calculations is not limited by the numerical discretization, but by the 
bulge in the interface, which causes the Mongt5 representation of the interface to fail. 
Continuing the calculations to larger relaxation times and rotation rates further 
along the solution families will require a more general interface representation. We 
are investigating the use of elliptic mesh generation techniques (Ryskin & Leal 1983 ; 
Christodoulou and Scriven 1992 ; Tsiveriotis & Brown 1991) for this purpose. 

We are grateful to the National Science Foundation and the Office of Naval 
Research for their financial support of this research. Computational resources were 
supplied by a grant from the Pittsburgh National Supercomputer Center. 
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